CA-Clipper

For DOS

Version 5.3

Drivers Guide

June 1995

(AOMPUTER"®
SSOCIATES @ e

Softwar: or by design. R recvcLepparer

© Copyright 1995 Computer Associates International, Inc.
One Computer Associates Plaza, Islandia, NY 11788. All rights reserved.

Printed in the United States of America

Computer Associates International, Inc.
Publisher

No part of this documentation may be copied, photocopied, reproduced, translated, microfilmed,
or otherwise duplicated on any medium without written consent of Computer Associates
International, Inc.

Use of the software programs described herein and this documentation is subject to the Computer
Associates License Agreement enclosed in the software package.
All product names referenced herein are trademarks of their respective companies.

Contents

Chapter 1: Introduction

Overview of RDD Systemo.iiuuiniiitiii i 1-2
Overview of Alternate Terminal Drivers 1-2
InThis Guide. 1-3
Chapter 2: Replaceable Database Driver Architecture 1-3
Chapter 3: DBFCDX Driver Installationand Usage........................... 1-3
Chapter 4: DBFMDX Driver Installationand Usage 1-3
Chapter 5: DBFNDX Driver Installationand Usage 14
Chapter 6: DBFNTX Driver Installationand Usage 1-4
Chapter 7: DBFMEMO Driver Installationand Usage 14
Chapter 8: DBFBLOB Driver Installationand Usage.......................... 14
Chapter 9: Alternate Terminal DIiverscoieuiiiiiiaaaeeaa.., 1-4

Chapter 2: Replaceable Database Driver
Architecture

InThisChapter........ ... 2-1
RDD BaSiCsottt et e et e e e e e e 2-2
Basic Terminology 24
Language Implementation e 2-6
User Interface Levels 2-9
Level A: Command-Level Interface I 2-10

Level B: Function-Level Interface....................... 2-11

RDD Featuresoit ittt e e e e e 2-14
CA-Clipper 5.3 Order Management System 2-15
CONCEPL . .ot 2-15

N OtES o oot e e 2-20
SUMIMATY ...ttt et et e 2-20

Drivers Guide i

Chapter 3: DBFCDX Driver Installation and Usage

InThisChapter e 3-1
Overview of the DBFCDXRDD e 3-2
CompactIndices 3-2
Compound Indices 3-3
Conditional Indices 3-3
Installing DBFCDX Driver Files 34
Linking the DBFCDX Database Driver......... 34
Using the DBFCDX Database Driver 3-4
Using .cdx/.fpt and .ntx/.dbt Files Concurrently 3-5
File Maintenance Under DBFCDX 3-6
DBFCDXand Memo Files 3-6
Tips for Using DBFCDX i, 3-7
SUMIMATYo e e 3-8

Chapter 4: DBFMDX Driver Installation and Usage

In This Chapter 4-1
Overview of the DBEMDXRDD i 4-1
Installing DBFMDX Driver Files 4-2
Linking the DBFMDX Database Driver 4-2
Using the DBFMDX Database Driver oo, 4-2

Tips for Using DBEMDX 4-3
Summary.................... A 44

Chapter 5: DBFNDX Driver Installation and Usage

In This Chapter e 5-1
Overview of the DBENDX RDD i 5-1
Installing DBENDX Driver Files 5-2
Linking the DBENDX Database Driver, 5-2
Using the DBFNDX Database Driver 5-3

Using .ntx and .ndx Files Concurrently 54

iv. CA-Clipper

Compatibility with dBASEIIIPLUS54

Supported Data Types............... e 5-4
Supported Key Expressions e 5-5
FIND vs. SEEK A 5-5
Sharing DataonaNetwork o 5-6
Compatibility withdBASEIV 5-6
Summary ... S 5-6

Chapter 6: DBFNTX Driver Installation and Usage

InThisChapter 6-1
Overview of the DBENTXRDD i 6-2
New Features.............. e 6-2
Compatibilityo 6-2
Installing DBFNTX Driver Files 6-3
Linking the DBFNTX Database Driver .. 6-3
Using the DBFNTX Database Driver 6-3
Using .ntx and .ndx Files Concurrently 6—4
Compatibility with dBASETIIPLUS 04
Supported Data Types............. 6-4
Supported Key Expressions 64
ErrorHandling65
FIND vs. SEEK o 6-5
Sharing DataonaNetwork 6-6
SUMMATYo 6-6

Drivers Guide v

Chapter 1
Infroduction

Important! Some of the topics in this guide are intended for advanced
CA-Clipper developers. Much of this information is presented at a fairly high
level and requires programming knowledge beyond the CA-Clipper language.
Other parts are useful to users of all levels. Refer to the User Interface Levels
section of the “Replaceable Database Driver Architecture” chapter to determine
which part of the language is appropriate to your level of expertise.

Based on your own level of experience with the CA-Clipper language, you
should decide whether you wish to take advantage of these new and advanced
features. The Reference Guide contains all existing CA-Clipper command and
function syntax and descriptions, whereas this guide addresses only the new
extensions to CA-Clipper. Understanding this information should enable you to
increase the power and effectiveness of your applications.

CA-Clipper 5.3 supports a driver architecture that allows
CA-Clipper-compiled applications to use replaceable database and
terminal drivers. This Drivers Guide contains all the information you
need to use the replaceable drivers provided as part of the CA-Clipper
Development System.

Drivers Guide 1-1

Overview of RDD System

Overview of RDD System

RDD is an abbreviation for Replaceable Database Driver, and it is used to
describe an interface that controls how your application accesses and
manipulates database and ancillary files.

CA-Clipper provides several RDDs to give you access to the database,
memo, and index file formats of many popular database software
products. By simply linking the proper RDD with your application, you
get automatic, easy access to files created by other database engines.

Moreover, CA-Clipper gives you new and enhanced commands and
functions designed to make your applications independent of the RDD in
use. Using RDDs, you can give end users more flexibility in choosing to
migrate to your CA-Clipper applications without losing data and to
easily move their data back and forth between applications if they prefer.

Overview of Alternate Terminal Drivers

An alternate terminal driver is a library (.LIB) file that controls how your
application addresses the screen output device. CA-Clipper provides
several alternate terminal drivers to allow your applications to run in a
wider variety of environments.

Note: To perform normal information presented in screen input/output
in a CA-Clipper application, you do not need the Drivers Guide. The
default database and terminal drivers are automatically linked and the
commands and functions used for these purposes are discussed in the
Reference Guide. For several categorized lists of these commands and
functions, refer to “Appendix G: Categorized Language Tables” in the
Error Messages and Appendices Guide.

1-2 CA-Clipper

In This Guide

In This Guide

This guide consists of nine chapters including this Introduction chapter.

For an online version of this guide accessible while operating your
program editor or any other development utility, use The Guide To
CA-Clipper. The Guide To CA-Clipper is an online documentation system
that uses the Norton Instant Access Engine™. It is documented in the
Programming and Utilities Guide.

o Note: The Workbench provides a separate online help system for all
menu commands, dialog boxes, and procedural steps. From the
Workbench, press F1 or click on the Help pull-down menu to access
this online help system.

Chapter 2: Replaceable Database Driver Architecture

The CA-Clipper database system supports a driver architecture that
makes CA-Clipper-compiled applications data format independent.
Such applications can, therefore, access the data formats of other
database systems, including the dBASE IV (.mdx) and FoxPro (.cdx)
formats on a variety of equipment. This chapter discusses how RDDs fit
into the overall CA-Clipper architecture, defines the basic terminology
you will need to understand subsequent chapters, and summarizes new
and enhanced commands and functions designed to support the RDD
architecture.

Chapter 3: DBFCDX Driver Installation and Usage

The DBFCDX database driver provides access to FoxPro 2 (.cdx) and
(.idx) file formats. This chapter explains how to install DBFCDX and
how to use it in your applications.

Chapter 4: DBFMDX Driver Installation and Usage

The DBFMDX database driver provides access to dBASE 1V (.dbf),
(.mdx), and (.dbt) file formats. The driver also supports dBASE
IV-compatible file and record locking schemes, allowing shared access
between CA-Clipper and dBASE IV programs. This chapter explains
how to install DBFMDX and how to use it in your applications.

Drivers Guide 1-3

In This Guide

Chapter 5:

Chapter 6:

Chapter 7:

Chapter 8:

Chapter 9:

DBFNDX Driver Installation and Usage

The DBFNDX database driver uses the CA-Clipper driver architecture to
access dBASE III PLUS compatible index files within a CA-Clipper
program, allowing you to create, access, and update dBASE III and
dBASE III PLUS compatible index (.ndx) files. This chapter explains how
to install DBFNDX and how to use it in your applications.

DBFNTX Driver Installation and Usage

DBFNTX is the default database driver for CA-Clipper that lets you
create and maintain index (.ntx) files with features above and beyond
those supplied with previous versions of DBFNTX. This chapter details
these new features and explains how to install and use DBFNTX in your
applications.

DBFMEMO Driver Installation and Usage

The DBFMEMO database driver provides greater flexibility when
working with memo fields. This chapter explains how to install
DBFMEMO and how to use it in your applications.

DBFBLOB Driver Installation and Usage

The DBFBLOB database driver provides an alternate mechanism for
working with memo fields. This chapter explains how to install
DBFBLOB and how to use it in your applications.

Alternate Terminal Drivers

CA-Clipper provides several alternate terminal drivers to allow your
applications to run in a wider variety of environments. This chapter
discusses how alternate terminal drivers fit into the overall CA-Clipper
architecture, as well as how to install and use each of the supplied
terminal drivers: ANSITERM, NOVTERM, and PCBIOS.

1-4 CA-Clipper

Chapter 2

Replaceable Database Driver
Architecture

In This Chapter

CA-Clipper supports a driver architecture that allows CA-Clipper
applications to use Replaceable Database Drivers (RDDs). The RDD
system makes CA-Clipper applications data-format independent. Such
applications can, therefore, access the data formats of other database
systems, including the dBASE IV (.mdx) and FoxPro (.cdx) formats on a
variety of equipment. This driver architecture can even support
database drivers that are not file-based, although all of the drivers
supplied with CA-Clipper 5.3 are file-based.

The concept of replaceable drivers is not new to this version of
CA-Clipper. In previous versions, the use of the default database driver
(DBFNTX.LIB) was hidden by the fact that it was automatically linked
into your application. In fact, this is still the case. The DBFNTX driver
has been replaceable since it was first introduced in version 5.0. Before
this version, the DBFNTX driver was the only RDD supplied as part of
the system.

With the introduction of the new RDDs, CA-Clipper provides many new
and enhanced commands and functions that access and manipulate
databases. These language elements can enable your applications to
access data regardless of the RDD under which it is ordered. There are
also commands and functions that give you specific information about
the RDDs in use.

The Language Implementation section of this chapter includes tables that
summarize these new and enhanced language elements. This chapter
also covers basic terminology, implementation principals, and general
concepts of the Order Management system.

Drivers Guide 2-1

RDD Basics

The following major topics are discussed:
s RDD Basics

s Basic Terminology

m Language Implementation

s Order Management System

RDD Basics

The cornerstone of the replaceable database driver system is the
CA-Clipper work area. All CA-Clipper database commands and
functions operate in a work area through a database driver that actually
performs the access to the stored database information. The layering of
the system looks like this:

Database Commands and Functions

RDD Interface

Database Driver

Stored Data

In this system, each work area is associated with a single database driver.
Each database driver, in turn, is supplied as a separate library (.LIB) file
that you link into your application programs. Within an application, you
specify the name of the database driver when you open or access a
database file or table with the USE command or DBUSEAREA() function.
If you specify no database driver at the time a file is opened, the default
driver is used. You may select which driver will be used as the default
driver.

Once you open a database in a work area, the RDD used for that work
area is automatically used for all operations on that database (except
commands and functions that create a new table). Any command or
function that creates a new table (i.e., SORT, CREATE FROM,
DBCREATEY(), etc.) uses the default RDD. Most of the new commands
and functions let you specify a driver other than the default driver.

2-2 CA-Clipper

RDD Basics

The normal default database driver, DBFNTX (which supports the
traditional .dbf, .ntx, and .dbt files), is installed in your \CLIP53\LIB
directory. This driver is linked into each program automatically to
provide backwards compatibility.

To use any of the other supplied drivers, either as an additional driver or
an alternate driver, you must use the REQUEST command to ensure that
the driver will be linked in. You must also include the appropriate
library on the link line.

All CA-Clipper applications will automatically include code generated
by Rddsys.prg from the \CLIP53\SOURCE\SYS subdirectory. If you
wish to automatically load another RDD, you must modify and compile
Rddsys.prg and link the resulting object file into your application. The
content of the default Rddsys.prg is shown below. Only the portion in
bold should be modified.

// Current Rddsys.prg

ANNOUNCE RDDSYS // This line must not change
INIT PROCEDURE RddInit
REQUEST DBFNTX // Force link for DBFNTX RDD
RDDSETDEFAULT("DBFNTX") // Set up DBFNTX as default

// driver
RETURN

// eof: Rddsys.prg

To change the default to a new automatically-loading driver, modify the
bold lines in Rddsys.prg to include the name of the new driver. For
example:

// Revised Rddsys.prg
#include "rddsys.ch"

ANNOUNCE RDDSYS // This line must not change
INIT PROCEDURE RddInit
REQUEST DBFCDX // Force link for DBFCDX RDD
RDDSETDEFAULT("DBFCDX") // Set up DBFCDX as default

// driver
RETURN

// eof: RdAdsys.prg

If you change this file, all CA-Clipper applications in which it is linked
will automatically include the new RDD.

To use any RDD other than the default, you must explicitly identify it
through the use of the VIA clause of the USE command.

You need not disable the automatic loading of DBFNTX in order to use
other RDDs in your applications, but if your application will not use any
DBFNTX functionality, you can save its code overhead by disabling it.

Drivers Guide 2-3

Basic Terminology

To completely disable the automatic loading of a default RDD, remove
the two lines shown above in bold. For example:
// New Revised Rddsys.prg

// disables auto-loading
#include "rddsys.ch"

ANNOUNCE RDDSYS // This line must not change
INIT PROCEDURE RddInit

RETURN
// eof: Rddsys.prg

Basic Terminology

The RDD architecture introduces several new terms and concepts that
are key to the design and usage of RDDs. You should familiarize
yourself with these concepts and terms as you begin to use the RDD
functionality. The meaning of some earlier terminology is also further
defined. The following RDD functional glossary defines the terminology
for all RDDs.

» Key Expression: A valid CA-Clipper expression that creates a key
value from a single record.

» Key Value: A value that is based on value(s) contained within
database fields, associated with a particular record in a database.

m Identity: A unique value guaranteed by the structure of the data file
to reference a specific record in a database even if the record is empty.
In the Xbase file (.dbf), the identity is the record number; but it could
be the value of a unique primary key or even the offset of an array in
memory.

» Keyed Pair: A pair consisting of a key value and an identity.

» Identity Order: Describes a database arranged by identity. In Xbase,
this refers to the physical arrangement of the records in the database
in the order in which they were entered (natural order).

n Tag: A set of keyed pairs that provides ordered access to the table
based on a key value. Usually, an order in a multiple-order index
(order).

2-4 CA-Clipper

Basic Terminology

Order: A named mechanism (index) that provides logical access to a
database according to the keyed pairs. This term encompasses both
single indices and the tags in multiple-tag indices.

Orders are not, themselves, data files. They provide access to data
that gives the appearance of an ordering of the data in a specific way.
This ordering is defined by the relationships between keyed pairs. An
order does not change the physical (the natural or entry) order of data
in a database.

Controlling Order: The active order (index) for a particular work
area. Only one order may control a work area at any time, and it
controls the order in which the database is accessed during paging
and searching.

Order List: A list of all the orders available to the database in the
specified work area.

Order Bag: A container that holds zero or more orders. Normally a
disk or memory file. A traditional index like .ntx is an order bag that
holds only one order. A multiple-tag index (.mdx or .cdx) is an order
bag that holds zero or more orders. Though order bags may be a
memory or disk file, CA-Clipper 5.3 only supports order bags as disk
files.

Record: A record in the traditional database paradigm is a row of one
or more related columns (fields) of data. In the expanded architecture
of CA-Clipper, a record could be data that does not exactly fit this
definition.

A record is, in this expanded context, data associated with a single
identity. In an Xbase data structure, this corresponds to a row (fields
associated with a record number); in other data structures, this may
not be the case.

In this document we use “record” in the traditional sense, but you
should be aware that CA-Clipper permits expansion of the meaning
of record.

Single-Order Bag: An order bag that can contain only one order. The
antx and .ndx files are examples of single-order bags.

Multiple-Order Bag: An order bag that can contain any number of
orders; a multiple-tag index. The .cdx and .mdx files are examples of
multiple-order bags.

Drivers Guide 2-5

Language Implementation

w Maintainable Scoped Orders: Scoped (filtered) orders created using
the FOR clause. The FOR condition is stored in the index header.
Orders of this type are correctly updated using the expression to
reflect record updates, deletions and additions.

s Non-Maintainable/Temporary Orders: Orders created using the
WHILE or NEXT clauses. These orders are useful because they can be
created quickly. However, the conditions in these clauses are not
stored in the index header. Therefore, orders of this type are not
correctly updated to reflect record updates, deletions and additions.
They are only for temporary use.

m Lock List: A list of the records that are currently locked in the work

area.

Language Implementation

To support the RDD architecture and let you design applications that are
independent of the data format you are using, many existing CA-Clipper
commands and functions have been enhanced, and several new language
elements have been added. The following tables summarize these
changes and additions. See the Reference Guide for more detailed
information on a particular item.

Enhanced Commands and Functions

Command/Function Chcnges

APPEND FROM VIA clause

COPY TO VIA clause B

DBAPPEND() Terminology

GO Terminology

DBSEEK Terminology

INDEX ALL, EVAL, EVERY, NEXT, RECORD, REST, TAG,
and UNIQUE clauses

SEEK SOFTSEEK option

SET INDEX ADDITIVE clause

SET ORDER IN, TAG clauses

DBSETINDEX() Terminology

RECNO() Terminology

2-6 CA-Clipper

Language Implementation

New Commands and Functions

Command/Function

Description

BLOBDIRECTEXPORT() Export the contents of a binary large object (BLOB)

pointer to a file

BLOBDIRECTGET()

Retrieve data stored in a BLOB file without
referencing a specific field

BLOBDIRECTIMPORT() Import a file into a BLOB file and return a pointer to

the data

BLOBDIRECTPUTY() Put data in a BLOB file without referencing a specific
field

BLOBEXPORTY() Copy the contents of a BLOB, identified by its memo
field number, to a file

BLOBGET() Get the contents of a BLOB, identified by its memo
field number

BLOBIMPORTY) Read the contents of a file as a BLOB, identified by a
memo field number

BLOBROOTGETY() Retrieve the data from the root area of a BLOB file

BLOBROOTLOCK() Obtain a lock on the root area of a BLOB file

BLOBROOTPUTY() Store data in the root area of a BLOB file

BLOBROOTUNLOCK() Release the lock on a BLOB file’s root area

DBFIELDINFO() Return and optionally change information about a
field

DBINFO() Return and optionally change information about a
database file opened in a work area

DBORDERINFO() Return and optionally change information about
orders and index files

DBRECORDINFO() Return and optionally change information about a
record

DBSEEK() Move to the record having the specified key value

DELETE TAG Delete a tag (order)

DBGOTO() Position record pointer to a specific identity

DBRLOCK() Lock the record at the current or specified identity

DBRLOCKLISTY() Return an array of the currently locked records

DBRUNLOCK Release all or specified record locks

INDEX Create an index file

MEMOSETSUPER() Set the RDD inheritance chain for DBFMEMO

Drivers Guide 2-7

Language Implementation

New Commands and Functions (cont.)

Command/Function Description

ORDBAGEXTY() Return the order bag file extension

ORDBAGNAME() Return the order bag name of a specific order

ORDCONDSET() Set the condition and scope for an order

ORDCREATE() Create an order in an order bag

ORDDESCEND() Return and optionally change the descending flag of
an order

ORDDESTROY() Remove a specified order from an order bag

ORDISUNIQUE() Return the status of the unique flag for a given order

ORDFOR() Return the FOR expression of an order

ORDKEY() Return the key expression of an order

ORDKEYADD() Add a key to a custom-built order

ORDKEYCOUNTY() Return the number of keys in an order

ORDKEYDELY() Delete a key from a custom-built order

ORDKEYGOTO() Move to a record specified by its logical record
number in the controlling order

ORDKEYNO() Get the logical record number of the current record

ORDKEYVALY) Get the key value of the current record from the
controlling order

ORDLISTADD() Add order bag contents or single order to the order
list

ORDLISTCLEAR() Clear the current order list

ORDLISTREBUILD() Rebuild all orders in the order list of the current work
area

ORDNAME() Return the name of an order in the work area

ORDNUMBER() Return the position of an order in the current order list

ORDSCOPE() Set or clear the boundaries for scoping key values in
the controlling order

ORDSETRELATION() Relate a specified work area to the current work area »

ORDSKIPUNIQUE() Move the record pointer to the next or previous
unique key in the controlling order

ORDSETFOCUS() Set focus to an order in an order list

RDDLIST() Return an array of the available Replaceable Database

Drivers

2-8 CA-Clipper

Language Implementation

New Commands and Functions (cont.)
Command/Function Description

RDDNAME() Return the name of the RDD active in the current or
specified work area

RDDSETDEFAULT() Set or return the default RDD for the application
SET DESCENDING Change the descending flag of the controlling order
SET MEMOBLOCK Change the block size for memo files

SET OPTIMIZE Change the setting that determines whether to
optimize using the open orders when processing a
filtered database file

SETSCOPE Change the top and/or bottom boundaries for scoping
_key values in the controlling order

SET SCOPEBOTTOM 7 Change the bottom boundary for scoping key values
in the controlling order

SET SCOPETOP Change the top boundary for scoping key values in
the controlling order

SEEK Search an order for a specified key value

User Interface Levels

We want to make it easy for you to quickly take advantage of the added
functionality provided in CA-Clipper 5.3. In order to effectively use the
RDDs, you should read the following discussions. They are provided as
a means of identifying the degree of programming knowledge or
CA-Clipper experience that will let you effectively use the RDD features.

For this purpose, the RDD feature set is divided into levels A and B,
separating the simpler features from those that are more sophisticated.
Tables listing the commands or functions that comprise these access
levels are also supplied. In addition, an RDD Features Summary is
provided in table form which outlines the features available in each
driver. The commands and functions in both of these levels of access are
described in the Reference Guide, Volumes 1 and 2.

Drivers Guide 2-9

Language Implementation

Level A: Command-Level Interface

Level A. A simple command-level interface very similar to those found
in other languages (e.g., dBASE IV, FoxPro). This is the primary access
for new CA-Clipper users who may or may not be familiar with other
languages.

The following table lists the commands and functions accessible by the
CA-Clipper programmer with background in languages such as dBASE
or FoxPro. The commands and functions in this table provide access to
the additional features without requiring an advanced knowledge of
CA-Clipper or other programming concepts.

Basic Commands and Functions
Command/Function Changes

GOTO Move the pointer to the specified identity
INDEX Create an index file
SEEK Search an order for a specified key value
(see also, DBSEEK())
SET INDEX Open one or more order bags in the current work area
SET ORDER Select the controlling order

APPEND BLANK Append a new record to the current lock list
(see also, DBAPPENDY())

RLOCK(Y) Lock the record at the current or specified identity
(see also, DBRLOCK())

FLOCK() Return an array of the current lock list
(see also, DBRLOCKLIST())

UNLOCK Release all or specified record locks (see also,
DBRUNLOCK)

2-10 CA-Clipper

Language Implementation

Level B: Function-Level Interface

Level B. CA-Clipper also adds a function level interface that not only
allows access to the enhanced functionality of the drivers, but permits the
building of higher-level functions using these composing behaviors. This
level is meant for more experienced CA-Clipper users who need to take
advantage of the full power of the driver and Order Management
system.

The following table lists the DML and order management functions
recommended to the intermediate or advanced CA-Clipper programmer.
These functions provide the greatest flexibility in accessing the extended
features of these drivers.

Advanced Commands and Functions

Command/Function Description

BLOBDIRECTEXPORT() Export the contents of a binary large object (BLOB)
pointer to a file

BLOBDIRECTGET() Retrieve data stored in a BLOB file without
referencing a specific field

BLOBDIRECTIMPORTY() Import a file into a BLOB file and return a pointer to

the data

BLOBDIRECTPUTY() Put data in a BLOB file without referencing a specific
field

BLOBEXPORTY() Copy the contents of a BLOB, identified by its memo
field number, to a file

BLOBGETY() Get the contents of a BLOB, identified by its memo
field number

BLOBIMPORTY() Read the contents of a file as a BLOB, identified by a
memo field number

BLOBROOTGET() Retrieve the data from the root area of a BLOB file

BLOBROOTLOCK() Obtain a lock on the root area of a BLOB file

BLOBROOTPUTY() Store data in the root area of a BLOB file

BLOBROOTUNLOCK() Release the lock on a BLOB file’s root area

DBAPPEND() Append a new record to the current lock list

DBFIELDINFO() Return and optionally change information about a
field

Drivers Guide 2-11

Language Implementation

Advanced Commands and Functions (cont.)
Command/Function Description

DBINFO() Return and optionally change information about a
database file opened in a work area
DBORDERINFO() Return and optionally change information about

orders and index files
DBRECORDINFO() Return and optionally change information about a

record
DBRLOCK() Lock the record at the current or specified identity
DBRLOCKLISTY() Return an array of the current lock list
DBRUNLOCK() Release all or specified record locks
DELETE TAG Delete a tag
MEMOSETSUPER() Set the RDD inheritance chain for DBFMEMO
ORDBAGEXT() Return the default order bag RDD extension
ORDBAGNAME() Return the order bag name of a specific order
ORDCONDSET() Set the condition and scope for an order
ORDCREATE() Create an order in an order bag
ORDDESCEND() Return and optionally change the descending flag of
an order
ORDDESTROY() Remove a specified order from an order bag
ORDFOR() Return the FOR expression of an order
ORDISUNIQUE() Return the status of the unique flag for a given ordé?i
ORDKEY() Return the key expression of an order
ORDKEYADD() Add a key to a custom-built order
ORDKEYCOUNT() Return the number of keys in an order
ORDKEYDEL() Delete a key from a custom-built order
ORDKEYGOTO() Move to a record specified by its logical record
number in the controlling order
ORDKEYNO() Get the logical record number of the current record
ORDKEYVALY) Get the key value of the current record from the
controlling order
ORDLISTADD() Add order bag contents or single order to the order B

list
ORDLISTCLEAR() Clear the current order list

2-12 CA-Clipper

Language Implementation

Advanced Commands and Functions (cont.)
Command/Function Description
ORDLISTREBUILD() Rebuild all orders in the order list of the current work

area

ORDNAME() Return the name of an order in the work area

ORDNUMBER() Return the position of an order in the current order
list

ORDSCOPE() Set or clear the boundaries for scoping key values in

the controlling order
ORDSETFOCUS() Set focus to an order in an order list
ORDSETRELATION() Relate a specified work area to the current work area

ORDSKIPUNIQUE() Move the record pointer to the next or previous
unique key in the controlling order

RDDLISTO ~ Returnan array of the available Replaceable Database
- Drivers
RDDNAME() Return the name of the RDD active in the current or

specified work area
RDDSETDEFAULT() Set or return the default RDD for the application
SET DESCENDING Change the descending flag of the controlling order
SET MEMOBLOCK Change the block size for memo files

SET OPTIMIZE Change the setting that determines whether to
optimize using the open orders when processing a

- filtered database file

SET SCOPE Change the top and/or bottom boundaries for
scoping key values in the controlling order

SET SCOPEBOTTOM Change the bottom boundary for scoping key values
in the controlling order

SET SCOPETOP Change the top boundary for scoping key values in
the controlling order

Drivers Guide 2-13

Language Implementation

RDD Features

The following decision table summarizes the availability of key features
across RDDs. It lists the features available in each RDD so you can use it
as an aid in correct RDD implementation and data access.

RDD Features Summary

ltem NTX NDX MDX CDX
Implicit record unlocking in single ~ Yes Yes Yes Yes
lock mode

Multiple record locks Yes Yes Yes Yes
Number of concurrent record locks ~ *1 *1 *1 *1
Order management (tag support) Yes Yes Yes Yes
Orders (tags) per order bag (file) 1 1 47 Unlimited
Number of order bags (files) 15 15 15 Unlimited
per work area

Conditional indices (FOR clause) Yes No Yes Yes
Temporary (partial) indices Yes No No Yes
(WHILE, ...)

Descending via DESCENDING Yes No Yes Yes
clause

Unique via the UNIQUE clause Yes Yes Yes Yes
EVAL and EVERY clause support Yes No No Yes
Production/structural indices No No Yes Yes
Maximum key expression length 256 256 220 255
(bytes)

Maximum FOR condition length 256 N/A 261 255
(bytes)

*1 determined by available memory.

2-14 CA-Clipper

CA-Clipper 5.3 Order Management System

CA-Clipper 5.3 Order Management System

Concept

CA-Clipper includes an expanded Order Management system which
provides a more effective and flexible way of indexing data. The main
objective of the order management implementation is to raise the Xbase
indexing paradigm from a low level of abstraction (Xbase database
specific) to a higher, more robust, level. This higher level of abstraction
allows the user to build new commands and functions.

Low-level abstraction refers to manipulation of discrete elements in the
database architecture (i.e., field names and sizes, methods of handling
controlling indices, etc.).

High-level abstraction refers to manipulation of general elements in a
data source. It lets us, for example, set a controlling order without
explicitly addressing the character of the data file structure. This higher
level of abstraction was achieved by reviewing all the processes that
indices have in common.

The order management function set was generically named (i.e., non-
DBF specific) to provide a semantic that could encompass future RDD
implementations that may not be file-bound. For example, an RDD
could easily be created that orders (indexes) on a memory array, or other
data structure, instead of a database. Therefore, all order management
functions simply begin with “ORD” (for “order”). You will find the
function names to be self-explanatory (e.g., ORDCREATE() creates an
order, and ORDDESTROY() destroys an order).

An order is a set of keyed pairs that provides a logical ordering of the
records in an associated database file. Each key in an order (index) is
associated with a particular identity (record number) in the data set
(database file). The records can be processed sequentially in key order,
and any record can be located by performing a SEEK operation with the
associated key value. An order never physically changes the data that it
is applied against, but creates a different view of that data.

There are at least four basic types of processes that you can perform with
an order:

1. Ordering: Changes the sequence in which you view the data records.

2. Scoping: Constrains the visibility of data to specified upper and lower
bounds. Determines the range of data items included through a
scoping rule, like the WHILE clause.

Drivers Guide 2-15

CA-Clipper 6.3 Order Management System

Filtration: Visibility of data is subject to conditional evaluation.
Filtration determines which items of data are included through a filter
rule, like the FOR clause.

Translation: Values in underlying data source are translated (or
converted) in some form based on a selection criteria. For example:

INDEX ON IIF(CUSTID > 1000, "NEW", "OLD")

The difference between scope and condition as it applies to FOR and
WHILE is that the WHILE clause provides scope, but not filtering, but a
FOR clause can provide both.

There are three primary elements in order management:

Order: An order is a set that has two elements in it: an order name,
which is a logical name that can be referenced, and an order expression
which supplies the view of the data. The order name provides logical
access to the expression and the order expression provides a way of
viewing the underlying data source. Data ordering can also be
modified to ascending or descending sequence.

— Order Name: An order name is a symbolic name, like a file’s alias,
that you use to manipulate an order. The difference between an
order name and the order number with which you would normally
access indices (orders), is that the order name is stored in the index
file. It is available each time you run the program, and is
maintained by the system. The order number is generated each
time the order is added to an order list and may change from one
program execution to another. This makes order name the
preferred means of referencing orders.

— Order Expression: An order expression is any valid CA-Clipper
expression. This is an index expression such as:

CUSTLIST->CUSTID

This expression produces the ordered view of the data. The values
derived from this expression are sorted, and it is the relationship of
these values to one another that provides the actual ordering.

2-16 CA-Clipper

CA-Clipper 5.3 Order Management System

a Order Number: An order number is provided by the order list. An
order number is only valid as long as the work area to which it
belongs is open.

— Order numbers provide one of the services performed by order
names, allowing you to access a specific order. In general, you
should avoid accessing orders by number.

- The ORDNUMBER() function returns the ordinal position of the
specified <orderName> within the specified <orderList>.

» Order Bag: An order bag is an unsorted collection of orders. Each
order contains two elements (order name and order expression). Each
order bag may have zero to n orders. The maximum is determined by
the RDD driver being used. Order bags are similar to multiple-index
files in that there is no guarantee of any specific order within the
container or bag. Within an order bag you can access specific orders
by referencing a particular order name. Order bags have persistence
between activations of the program.

Name Expression

rder 1

Order 2

Order Bag Order List

Figure 2-1: Order bag containing two orders before emptying to
order list

Drivers Guide 2-17

CA-Clipper 5.3 Order Management System

m Order List: An order list orders the collection of orders that are
associated with and active in the current work area. It provides
access to the orders active within a given work area. Each work area
has an order list, and there is only one order list per work area. An
order list is created when a new work area is opened, and exists only
as long as that work area is active. Once you close a work area, the
order list ceases to exist.

Name Expression

Cust JLname

Empty order bag
contents into
order list

Order Bag Order List

Figure 2-2: Order bag being emptied to order list

Name Expression

Cust jLname

Place § Addr

Order Bag Order List

Figure 2-3: Order bag emptied to order list

2-18 CA-Clipper

CA-Clipper 5.3 Order Management System

When you SET INDEX TO, the contents of the order bag are emptied
into the order list. At this point, the orders in the order list are active
in the work area, where they will be updated as the data associated
with the work area is modified. You may access an order in the list by
its order number or by its order name. You should access an order by
its name rather than a hard-coded ordinal position. You can make
any order in the order list the controlling order by giving it focus, as
explained below.

Order List Focus: Order list focus is, essentially, a pointer to the order
that is used to change the view of the data. It is synonymous with
controlling order or controlling index, and defines the active index
order. The SET ORDER TO command does not modify the order list
in any way. It does not clear the active indices. It only changes the
order list focus (the controlling order in the order list).

Custy|

Order List Focus

Figure 2-4: SETting FOCUS fo an order, "Name,” in an order list

Drivers Guide 2-19

Summary

Notes

The following list contains specific information regarding order bag
usage and limitations with DBFNDX and DBFNTX index files:

w Single-order bags: With DBFNDX and DBENTX you can explicitly
assign the order name within the order creation syntax. You can then
use the order name in any command or function that accepts an order
name (tag) as a parameter.

m Single-order bag with INDEX ON: Single-order bags may retain the
order name between activations. During creation, DBENTX stores an
optionally supplied order name in the file’s header for subsequent
use. Therefore, the order name is nof necessarily the same as that of
the file. By contrast, DBFNDX cannot store an order name since this
would prevent dBASE from accessing the file. By default DBENDX
orders inherit the name of their index file.

Summary

This chapter has introduced you to the RDD concept, giving you specific
information on the architecture that implements RDDs in CA-Clipper.
The basic terminology of RDDs has also been defined.

Finally, you have seen an overview of the language enhancements
designed to make using RDDs straightforward and to let you build
applications that do not depend on the RDD in use. The following
chapters elaborate on these language enhancements, discussing syntax
and usage in detail.

2-20 CA-Clipper

Chapter 3

DBFCDX Driver Installation
and Usage

In This Chapter

DBFCDX is the FoxPro 2 compatible RDD for CA-Clipper. As such, it
connects to the low-level database management subsystem in the
CA-Clipper architecture. When you use the DBFCDX RDD, you add a
number of new features including:

FoxPro 2 file format compatibility

Compact indices

Compound indices

Conditional indices

Memo files smaller and more efficient than DBFNTX format

An efficient storage mechanism for data which is not tabular in nature

This chapter explains how to install DBFCDX and how to use it in your
applications. The following major topics are discussed:

Overview of the DBFCDX RDD
Installing DBFCDX Driver Files
Linking the DBFCDX Driver
Using the DBFCDX Driver

Drivers Guide 3-1

Overview of the DBFCDX RDD

Overview of the DBFCDX RDD

The DBFCDX driver lets you create and maintain index/memo

(.cdx/ fpt) files with features different from those supplied with the
original DBFNTX driver and is compatible with files created under
FoxPro 2. The new features are supplied in the form of several
syntactical additions to the INDEX and REINDEX commands and some
additional functions. Specifically, you can:

m Create indices smaller than those created with the DBFNTX driver.
The key data is stored in a compressed format that substantially
reduces the size of the index file.

m Create a compound index file that contains multiple indices (tags),
making it possible to open several indices under one file handle. A
single .cdx file may contain unlimited index keys in compressed
format.

s Create conditional indices (FOR/WHILE/REST/NEXT).

m Create files with FoxPro 2 file format compatibility.

m Create memo files with a 4.2 GB file size limitation.

» Create memo files with a 1-byte minimum block size limitation.
m Recycle file space in memo files.

» Store any CA-Clipper data type (other than code blocks) in memo
files.

m Use extensions to the CA-Clipper language (BLOB functions) for file
and field management of memo files.

Compact Indices

Like FoxPro 2, the DBFCDX driver creates compact indices. This means
that the key data is stored in a compressed format, resulting in a
substantial size reduction in the index file. Compact indices store only
the actual data for the index keys. Trailing blanks and duplicate bytes
between keys are stored in one or two bytes. This allows considerable
space savings in indices with much empty space and similar keys. Since
the amount of compression is dependent on many variables, including
the number of unique keys in an index, the exact amount of compression
is impossible to predetermine.

3-2 CA-Clipper

Overview of the DBFCDX RDD

Compound Indices

A compound index (.cdx) is an index file (called an order bag) that
contains multiple indices (called tags). Compound indices make several
indices available to your application while only using one file handle.
Therefore, you can overcome the CA-Clipper index file limit of 15. The
DBFCDX RDD permits opening as many indices per work area as there
are available file handles and memory.

Once you open a compound index, all the tags contained in the file are
automatically updated as the records are changed. A tagin a compound
index is essentially identical to an individual index and supports all the
same features. The first tag (in order of creation) in the compound index
is, by default, the controlling index.

Note that you should avoid using SET ORDER TO [<nOrder>] with
DBFCDX. Instead, use either:

SET ORDER TO //Nullify order, leaving .cdx’'s open for updating
-OR-
SET ORDER TO TAG <cOrderName> [IN <xcOrderBagName>]

For more detailed information about the SET ORDER command, see the
Reference Guide, Volume 2. Also, see the ORDSETFOCUS() function.

Conditional Indices

The DBFCDX driver can create indices with a built-in FOR clause. These
are conditional indices in which the condition can be any expression,
including a user-defined function. As the database is updated, only
records that match the index condition are added to the index, and
records that satisfied the condition before, but do not any longer, are
automatically removed.

Expanded control over conditional indexing is supported with the
revised INDEX and REINDEX command options as in the new DBFENTX
driver.

Drivers Guide 3-<

Installing DBFCDX Driver Files

Installing DBFCDX Driver Files

The DBFCDX driver is supplied as two files, DBFECDX.LIB and
_DBFCDX.LIB.

The CA-Clipper installation program installs these files in the
\CLIP53\LIB subdirectory on the drive that you specify, so you need not
install the driver manually.

Linking the DBFCDX Database Driver

To link the DBFCDX database driver into an application program, you
must specify DBFCDX.LIB to the linker in addition to your application
object (.OB]J) files.

To link it, use:

EXOSPACE FI <appObjectList> LI DBFCDX, _DBFCDX

Note: These link commands all assume the LIB and OBJ environment
variables are set to the standard locations. They also assume that the
CA-Clipper programs were compiled without the /R option.

Using the DBFCDX Database Driver

To use FoxPro 2 files in a CA-Clipper program:

1. Place REQUEST DBFCDX at the beginning of your application or at
the top of the first program (.prg) file that opens a database file using
the DBFCDX driver.

2. Specify the VIA “DBFCDX” clause if you open the database file with
the USE command.

-OR-

3-4 CA-Clipper

Using the DBFCDX Database Driver

3. Specify “DBFCDX” for the <cDriver> argument if you open the
database file with the DBUSEAREA() function.

-OR-

4. Use RDDSETDEFAULT(“DBFCDX") to set the default driver to
DBFCDX.

Except in the case of REQUEST, the RDD name must be a literal
character string or a variable. In all cases it is important that the
driver name be spelled correctly using uppercase letters.

The following program fragments illustrate:

REQUEST DBFCDX

USE Customers INDEX Name, Address NEW VIA "DBFCDX"
-OR-

REQUEST DBFCDX
RDDSETDEFAULT ("DBFCDX")

USE Customers INDEX Name, Address NEW

Using .cdx/.fpt and .ntx/.dbt Files Concurrently

You can use both .cdx/.fpt and .ntx/.dbt files concurrently in a
CA-Clipper program like this:

// (.ntx) file using default DBFNTX driver
USE Filel INDEX Filel NEW

// (.cdx) files using DBFCDX driver (with non-production .cdx
// files)
USE File2 VIA "DBFCDX" INDEX File2 NEW

Note, however, that you cannot use .cdx and .ntx files in the same work
area. For example, the following does not work:

USE Filel VIA "DBFNTX" INDEX Filel.ntx, File2.cdx

You can use .cdx and .idx files concurrently in the same work area, but
this is not recommended since a .cdx file may additionally contain the
desired index key. However, you can use the .fpt format with the .ntx
index. You must use the DBFMEMO RDD, and not the DBFCDX RDD, to
achieve this combination.

Drivers Guide 3-5

Using the DBFCDX Database Driver

File Maintenance Under DBFCDX

When an existing tag in a compound index (.cdx) is rebuilt using INDEX
ON...TAG..., the space used by the original tag is not automatically
reclaimed. Instead, the new tag is added to the end of the file, increasing
file size. Because of this, you should use INDEX...ON...TO to create
temporary files and not create them as tags in the production .cdx.

You can use the REINDEX command to “pack” the index file. REINDEX
rebuilds each tag, eliminating any unused space in the file.

If you rebuild your indices on a regular basis, you should either delete
your .cdx files before rebuilding the tags or use the REINDEX command
to eliminate wasted space after recreating a tag within the .cdx file.

The .fpt files do not require maintenance under normal conditions. They
will not grow more than 10 to 20 percent larger than their packed size
even on a network with a lot of file activity. However, if you want to
eliminate this working slack space from the .fpt files (for example, when
shipping data to a customer), use the COPY TO command to create a .fpt
file that is as small as possible. Note that the PACK command does not
eliminate the extra space that may be present. However, the space is
available for reuse.

DBFCDX and Memo Files

The DBFCDX driver uses FoxPro-compatible memo (.fpt) files to store
data for memo fields. These memo files have a default block size of 32
bytes rather than the 512-byte default for .dbt files. In addition, the block
size can be set as low as 1 byte which yields a true variable length field
memo file. However, using a block size less than 32 bytes will render the
file incompatible with FoxPro.

DBFCDX memo files can store any type of data except code blocks and
objects. In addition, they can store data larger than 64K (remember that
strings in CA-Clipper variables are still limited to 64K). While .dbt files
use an end of file marker (ASCII 26) at the end of a memo entry, .fpt files
store the length of the entry. This not only eliminates the problems
normally encountered with storing binary data in a memo field, but also
speeds up memo field access since the data need not be scanned to
determine the length.

3-6 CA-Clipper

Using the DBFCDX Database Driver

Note that FoxPro is only capable of reading and writing character data to
a memo file. Writing arrays and other data types to a memo file is a
CA-Clipper extension to the .fpt file format, and FoxPro will not be able
to read these data types. In addition, FoxPro is not able to read character
data greater than 64K.

Tips for Using DBFCDX

Below are several tips for using DBFCDX:

1. Make sure index extensions are not hard-coded in your application.
The default extension for DBFCDX indices is .cdx, not .ntx. You can,
however, still use .ntx as the extension as long as you specify the
extension when you create your indices. The best way to determine
index extensions in an application is to call ORDBAGEXT().

For example, if you currently use the following code to determine the
existence of an index file,

IF .NOT. FILE("Index.ntx")
INDEX ON field TO index
ENDIF

change the code to include the ORDBAGEXT() function, as follows:

IF .NOT. FILE("index"+ORDBAGEXT ())
INDEX ON field TO index
ENDIF

Caution! DBFCDX supports both .cdx and .idx files; and ORDBAGEXT()
returns the default index extension of the driver loaded, not the actual
index file extension.

2. If your application uses memo fields, you should convert your .dbt
files to .fpt files.

There are some good reasons for using .fpt files. Most important is
the 32-byte block size (or 1-byte blocks, which are even more efficient
but are not compatible with most implementations of .fpt files).
CA-Clipper’s .dbt files use a fixed block size of 512 bytes, which
means that every time you store even 1 byte in a memo field
CA-Clipper uses 512 bytes to store it. If the data in a memo field
grows to 513 bytes, then two blocks are required.

When creating .fpt files, the block size is set at 32 bytes which is the
optimal size while retaining .fpt compatibility. A simple conversion
from .dbt files to .fpt files will generally shrink your memo files by
approximately 30 percent (50 percent if you set the block size to 1).

Drivers Guide 3-7

Summary

3.

4.

Summary

Add DBFCDX.LIB and _DBFCDX.LIB as libraries to your link
command or link script.

If you receive an error message indicating that there is a problem with
the .cdx file when creating a production .cdx index using

INDEX ON <expKey> TAG <OrderName>

you may reset the .dbf header. Specifically, the character at OffSet
1Ch (16 + 12) needs to be changed or reset to 0.

To reset the .dbf header for a missing or corrupt production .cdx file,
use the following low-level utility:

FUNCTION ResetDBHdAr (cFileName)
LOCAL nHandle, cBuffer, nOffSet := 28
cBuffer := CHR(O0)

nHandle := FOPEN(cFileName, FO_READWRITE)
IF ! (nHandle == -1)
FSEEK(nHandle, nOffSet)
FWRITE(nHandle, cBuffer)
FCLOSE (nHandle)
? "All done"
ELSE
? "Error opening the file. DOS error: ", FERROR()
ENDIF

RETURN . (NIL)

In this chapter, you were given an overview of the features and benefits
of the DBFCDX RDD. You also learned how to link this driver and how
to use it in your applications.

3-8 CA-Clipper

Chapter 4

DBFMDX Driver Installation
and Usage

In This Chapter

DBFMDX is the dBASE IV compatible RDD for CA-Clipper. This driver
provides .dbf, .dbt, and .mdx file format compatibility.

This chapter explains how to install DBFMDX and how to use it in your
applications. The following major topics are discussed:

s Overview of the DBFMDX RDD
» Installing DBFMDX Driver Files
s Linking the DBFMDX Driver

s Using the DBFMDX Driver

Overview of the DBFMDX RDD

The DBFMDX database driver provides dBASE IV compatibility,
including access to .dbf, .mdx, and .dbt file formats. The driver also
supports dBASE IV compatible file and record locking schemes, allowing
shared access between CA-Clipper and dBASE IV programs.

Note: CA-Clipper does not currently provide dBASE V compatibility.

Drivers Guide 4-1

Installing DBFMDX Driver Files

Installing DBFMDX Driver Files

The DBFMDX database driver is supplied as the file, DBFMDX.LIB.

The CA-Clipper installation program installs this driver in the
\CLIP53\LIB subdirectory on the drive that you specify, so you need not
install the driver manually.

Linking the DBFMDX Database Driver

To link the DBFMDX database driver into an application program, you
must specify DBFMDX.LIB to the linker in addition to your application
object (.OB]J) files.

To link it, use:

EXOSPACE FI <appObjectList> LI DBFMDX

Note: These link commands all assume the LIB and OB]J environment
variables are set to the standard locations. They also assume that the
CA-Clipper programs were compiled without the /R option.

Using the DBFMDX Database Driver

To use .mdx files in a CA-Clipper program:

1. Place REQUEST DBFMDX at the beginning of your application or at
top of the first program (.prg) file that opens a database file using the
DBFMDX driver.

2. Specify the VIA “DBFMDX” clause if you open the database file with
the USE command.

-OR-

3. Specify “DBFMDX” for the <cDriver> argument if you open the
database file with the DBUSEAREA () function.

-OR-

4. Use RDDSETDEFAULT(“DBFMDX") to set the default driver to
DBFMDX.

4-2 CA-Clipper

Using the DBFMDX Database Driver

Except in the case of REQUEST, the RDD name must be a literal
character string or a variable. In all cases it is important that the
driver name be spelled correctly using uppercase letters.

Tips for Using DBFMDX

1. Though the DBFMDX driver supports numbered indices, you should
avoid using them (e.g., in operations like SET ORDER and
INDEXKEY()). In a multiple-index system you do not have the
absolute control of the numeric position of an open index that you
have in a single-index system. As you add, delete, and rebuild index
tags, their numeric position may change. Therefore, you should make
all command references by name and avoid using SET ORDER TO
[<nOrder>] with DBFMDX. Instead, use either:

SET ORDER TO //Nullify order, leaving .mdx’'s open for updating
-OR-
SET ORDER TO TAG <cOrderName> [IN <xcOrderBagName>]

For more detailed information about the SET ORDER command, see
the Reference Guide, Volume 2. Also, see the ORDSETFOCUS()
function.

2. When creating a production .mdx index using the following,

INDEX ON <expKey> TAG <OrderName>

you may receive an error message indicating that the .dbf file header
is corrupted. Specifically, the character at OffSet 1Ch (16 + 12) needs
to be changed or reset to 0.

To reset the .dbf header for a missing or corrupt production .mdx file,
use the following low-level utility:

FUNCTION ResetDBHdr (cFileName)

LOCAL nHandle, cBuffer, nOffSet := 28

cBuffer := CHR(O0)

n Handle := FOPEN(cFileName, FO_READWRITE)
IF ! (nHandle == -1)

FSEEK (nHandle, nOffSet)

FWRITE(nHandle, cBuffer)

FCLOSE(nHandle)

? "All done"
ELSE

? "Error opening the file. DOS error: ", FERROR()
ENDIF

RETURN (NIL)

Drivers Guide 4-3

Summary

Summary

In this chapter, you were given an overview of the features and benefits
of the DBFMDX RDD. You also learned how to link this driver and how
to use it in your applications.

4-4 CA-Clipper

Chapter 5

DBFNDX Driver Installation
and Usage

In This Chapter

DBFNDX is the dBASE III PLUS compatible RDD for CA-Clipper. The
DBFNDX driver uses the CA-Clipper driver architecture to access dBASE
III PLUS compatible index files within a CA-Clipper program.

This chapter explains how to install DBFNDX and how to use it in your
applications. The following major topics are discussed:

= Overview of the DBFENDX RDD
s Installing DBFNDX Driver Files
s Linking the DBFENDX Driver

Using the DBFNDX Driver
Compatibility with dBASE III PLUS

Overview of the DBFNDX RDD

The DBFNDX database driver allows creation, access, and updating of
dBASE III and dBASE III PLUS compatible index (.ndx) files. Index
(.ndx) files created with CA-Clipper are exactly the same as those created
by dBASE III PLUS. All operations that can be performed on standard
CA-Clipper index (.ntx) files can be performed on .ndx files using the
DBFNDX database driver.

Drivers Guide 5-1

Installing DBFNDX Driver Files

In a network environment, the DBFNDX driver supports the CA-Clipper
file and record locking scheme. The multi-user behavior is the same as
the default DBFNTX driver. This means that the DBFNDX database
driver supports concurrent access to .ndx files between CA-Clipper
applications only. Concurrent access to .ndx files between dBASE III
PLUS and CA-Clipper programs is not supported.

Important! Updating database (.dbf) and index (.ndx) files shared between
dBASE 11l PLUS and CA-Clipper programs may corrupt the .dbf file and any of
its associated .ndx files.

Installing DBFNDX Driver Files

The DBFNDX database driver is supplied as the file, DBFNDX.LIB.

The CA-Clipper installation program installs this driver in the
\CLIP53\LIB subdirectory on the drive that you specify, so you need not
install the driver manually.

Linking the DBFNDX Database Driver

To link the DBENDX database driver into an application program, you
must specify DBENDX.LIB to the linker in addition to your application
object (.OB]J) files.

To link it, use:

EXOSPACE FI <appObjectList> LI DBFNDX

Note: These link commands all assume that the LIB and OB]
environment variables are set to the standard locations. They also
assume that the CA-Clipper programs were compiled without the /R
option.

5-2 CA-Clipper

Using the DBFNDX Database Driver

Using the DBFNDX Database Driver

To use .ndx files in a CA-Clipper program:

1. Place a REQUEST DBFNDX at the beginning of your application or at
the top of the first program (.prg) file that opens a database file using
the DBFNDX driver.

2. Specify the VIA “DBFNDX” clause if you open the database file with
the USE command.

-OR-

3. Specify “DBFNDX” for the <cDriver> argument if you open the
database file with the DBUSEAREA() function.

-OR-

4. Use RDDSETDEFAULT(“DBENDX") to set the default driver to
DBFNDX.

Except in the case of REQUEST, the RDD name must be a literal
character string or a variable. In all cases it is important that the
driver name be spelled correctly using uppercase letters.

The following program fragments illustrate:

REQUEST DBFNDX

USE Customers INDEX Name, Address NEW VIA "DBFNDX"

-OR-

REQUEST DBFNDX
RDDSETDEFAULT ("DBFNDX")

USE Customers INDEX Name, Address NEW

Drivers Guide 5-3

Compatibility with dBASE 1ll PLUS

Using .ntx and .ndx Files Concurrently

You can use .ndx and .ntx files concurrently in a CA-Clipper program
like this:

REQUEST DBFNDX

// (.ntx) file using default DBFNTX driver
USE Filel INDEX Filel NEW

// (.ndx) files using DBFNDX driver
USE File2 VIA "DBFNDX" INDEX File2 NEW

Note, however, that you cannot use .ndx and .ntx files in the same work
area. For example, the following does not work:

USE Filel VIA "DBFNDX" INDEX Filel.ntx, File2.ndx

Compatibility with dBASE Il PLUS

When accessing dBASE III PLUS (.ndx) files, there are several
compatibility issues of which you must be aware. These issues are
discussed below.

Supported Data Types

The DBFNDX database driver supports the following data types for key
expressions:

m Character

s Numeric

» Date (using the DTOS() function, not DTOC())

This is consistent with dBASE III PLUS.

The DBFNDX database driver does not support indexing with logical key
expressions as does the default DBFNTX database driver. This is
actually a dBASE III PLUS limitation and is not supported by the
DBFNDX driver in order to enforce compatibility with dBASE III PLUS.

To work around this limitation, index logical values by converting them
to character values like this:

INDEX ON IIF (<lExp>, "T", "F") TO <logicalIndex>

5-4 CA-Clipper

Compatibility with dBASE Il PLUS

Supported Key Expressions

When you create .ndx files using the DBFNDX driver, you must use only
CA-Clipper or user-defined functions compatible with dBASE III PLUS.
Use of the other functions will render the .ndx file unreadable in dBASE
I PLUS.

FIND vs. SEEK

In CA-Clipper, you can use the FIND compatibility command only to
locate keys in indices where the index key expression is character type.
This differs from dBASE Il PLUS where FIND supports character and
numeric key values.

Note: In CA-Clipper programs, always use the SEEK command or the
DBSEEK() function to search an index for a key value.

The DBFNDX driver lets you recover from a data type error raised
during a FIND or SEEK. However, since Error:canDefault,
Error:canRetry, and Error:canSubstitute are set to false (.F.), you should
use BEGIN SEQUENCE...END to handle a SEEK or FIND data type
error. Within the error block for the current operation, issue a BREAK()
using the error object the DBFNDX database driver generates, like this:

bOld := ERRORBLOCK ({|oError| BREAK (oError)})

BEGIN SEQUENCE

SEEK xVar
RECOVER USING oError
// Recovery code
END

ERRORBLOCK (b01d)

There is an extensive discussion of the effective use of the CA-Clipper
error system in the “Error Handling Strategies” chapter of the
Programming and Utilities Guide.

Drivers Guide 5-5

Compatibility with dBASE IV

Sharing Data on a Network

As mentioned above, the DBFNDX driver does not support dBASE 111
PLUS file and record locking schemes. Instead, the DBFNDX driver
supports the DBENTX file and record locking scheme. This means that if
the same database and index files are open in CA-Clipper and dBASE III
PLUS, CA-Clipper program locks are not visible to dBASE III PLUS and
vice versa.

Warning! Database integrity is not guaranteed and index corruption will occur
if CA-Clipper and dBASE III PLUS programs attempt to write to a database or
index file at the same time. For this reason, concurrent use of the same database
(.dbf) and index (.ndx) files by dBASE 111 PLUS and CA-Clipper programs is
strongly discouraged and not supported by Computer Associates.

Compatibility with dBASE IV

Specific compatibility with dBASE IV is provided through the DBEMDX
driver. It includes .dbf, .mdx, and .dbt file format compatibility and is
described in detail in the previous chapter.

Summary

In this chapter, you were given an overview of the features and benefits
of the DBENDX RDD. You learned how to link this driver and how to
use it in your applications. In addition you were given an overview of
the compatibility issues.

5-6 CA-Clipper

Chapter 6

DBFNTX Driver Installation
and Usage

In This Chapter

DBFNTX is the default RDD for CA-Clipper. This new database driver
replaces the DBFNTX database driver supplied with earlier versions of
CA-Clipper and adds a number of new indexing features. With
DBENTX, you can:

s Create conditional indices by specifying a FOR condition

m Create indices using a record scope or WHILE condition, allowing
you to INDEX based on the order of another index

s Create both ascending and descending order indices

» Specify an expression that is evaluated periodically during indexing
in order to display an index progress indicator

This chapter explains how to install DBENTX and how to use it in your
applications. The following major topics are discussed:

s Overview of the DBFNTX RDD

s Installing DBENTX Driver Files

m Linking the DBENTX Driver

m Using the DBFENTX Driver

s Compatibility with dBASE III PLUS

Drivers Guide 6-1

Overview of the DBFNTX RDD

Overview of the DBFNTX RDD

As an update of the default database driver, DBFNTX is linked into and
used automatically by your application unless you compile using the /R
option.

New Features

The replaceable driver lets you create and maintain index (.ntx) files
using features above and beyond those supplied with the previous
DBFNTX driver. The new indexing features are supplied in the form of
several syntactical additions to the INDEX and REINDEX commands.
Specifically you can:

m Specify full record scoping and conditional filtering using the
standard ALL, FOR, WHILE, NEXT, REST, and RECORD clauses

m Create an index while another controlling index is still active

m Monitor indexing as each record (or a specified record number
interval) is processed using the EVAL and EVERY clauses

» Eliminate separate coding for descending order keys using the
DESCENDING clause

Compatibility

Index (.ntx) files created with the original DBENTX driver are compatible
with DBFNTX and can be used in new applications without reindexing.
Index (.ntx) files created with this version of DBFNTX will also work
with previous CA-Clipper applications provided that you use no FOR,
WHILE, <scope>, or DESCENDING clauses.

Important! Indices produced with DBFNTX using FOR or DESCENDING
are incompatible with earlier version .ntx files. If you attempt to access them
with the original DBFNTX database driver or programs compiled with versions
earlier than CA-Clipper 5.2, you will get an unrecoverable runtime error. In
CA-Clipper, this generates an “index corrupted” error message, causing the
application to terminate.

6-2 CA-Clipper

Installing DBFNTX Driver Files

Installing DBFNTX Driver Files

The DBFNTX driver is supplied as the file, DBFNTX.LIB.

The CA-Clipper installation program installs this driver as the default in
the \CLIP53\LIB subdirectory on the drive that you specify, so you need
not install the driver manually.

Linking the DBFNTX Database Driver

Since DBFNTX is the default database driver for CA-Clipper, there are
no special instructions for linking. Unless you specify the /R option
when you compile, the new driver will be linked into each program
automatically if you specify a USE command or DBUSEAREA() function
without an explicit request for another database driver. The driver is
also linked if you specify an INDEX or REINDEX command with any of
the new features.

Using the DBFNTX Database Driver

In applications written for the new DBFNTX driver, you can use the
INDEX and REINDEX commands exactly as you have used them in the
past. The index (.ntx) files you create and maintain in this way are
completely compatible with those created using previous versions of the
driver.

Changes to existing code are necessary only if you use the new indexing
features. The .ntx files you create using the new features will have a
slightly different header file and cannot be used by programs linked with
a previous version of the driver.

Drivers Guide 6-3

Compatibility with dBASE Il PLUS

Using .ntx and .ndx Files Concurrently

You can use .ntx and .ndx files concurrently in a CA-Clipper program
like this:

// (.ntx) file using default DBFNTX driver
USE Filel INDEX Filel NEW

// (.ndx) files using DBFNDX driver
USE File2 VIA "DBFNDX" INDEX File2 NEW

Note, however, that you cannot use .ntx and .ndx files in the same work
area. For example, the following does not work:

USE Filel VIA "DBFNDX" INDEX Filel.ntx, File2.ndx

Compatibility with dBASE Il PLUS

The default DBFNTX driver makes CA-Clipper programs behave
differently from traditional dBASE programs. Some of these differences
are discussed below:

Supported Data Types

The DBFNTX database driver supports the following dBASE IIl PLUS
compatible data types for key expressions:

m Character

s Numeric

m Date

s Logical

Supported Key Expressions

When you create .ntx files using the DBENTX driver, you can use all
CA-Clipper or user-defined functions compatible with dBASE III PLUS,
as well as other functions accepted by the extended CA-Clipper
functionality.

6-4 CA-Clipper

Compatibility with dBASE IIl PLUS

Error Handling

The indexing behavior of DBENTX and DBFNDX in a CA-Clipper
application is identical unless otherwise noted. With the default
DBENTX driver, you can handle most errors using BEGIN
SEQUENCE...END as illustrated in the next section.

FIND vs. SEEK

In CA-Clipper, you can use the FIND command only to locate keys in
indices where the index key expression is a character data type. This
differs from dBASE III PLUS where FIND supports character and
numeric key values.

Note: In CA-Clipper programs, always use the SEEK command or the
DBSEEK() function to search an index for a key value.

The DBFNTX driver lets you recover from data type errors raised during
a FIND or SEEK. However, since Error:canDefault, Error:canRetry and
Error:canSubstitute are set to false (.F.), you should use BEGIN
SEQUENCE...END to handle such SEEK or FIND data type errors.
Within the error block for the current operation, issue a BREAK() using
the error object that the DBENTX database driver generates, like this:

b0ld := ERRORBLOCK ({|oError| BREAK (oError)})

BEGIN SEQUENCE
SEEK xVar
RECOVER USING oError
// Recovery code
END

ERRORBLOCK (b01d)

There is an extensive discussion of the effective use of the CA-Clipper
error system in the “Error Handling Strategies” chapter of the
Programming and Utilities Guide.

Drivers Guide 6-5

Summary

Sharing Data on a Network

The DBFNTX driver provides file and record locking schemes that are
different from dBASE III PLUS schemes. This means that if the same
database and index files are open in CA-Clipper and in dBASE III PLUS,
CA-Clipper program locks are not visible to dBASE III PLUS and vice
versa.

Warning! Database integrity is not guaranteed and index corruption will occur
if CA-Clipper and dBASE III PLUS programs attempt to write to a database or
index file at the same time. Therefore, concurrent use of the same database (.dbf)
and index (.ndx) files by dBASE 111 PLUS and CA-Clipper programs is strongly
discouraged and not supported by Computer Associates.

Summary

In this chapter, you were given an overview of the new features of the
default DBFNTX RDD. You learned how this driver is automatically
linked and how to use it in your applications, and were given an
overview of the compatibility issues.

6-6 CA-Clipper

Chapter 7

DBFMEMO Driver Installation
and Usage

In This Chapter

DBFMEMO provides very efficient and flexible memo file features which
can be used in conjunction with DBFNTX, DBFMDX, or other third party
index/database drivers. As such, it inherits the index and database
characteristics from one of these other drivers while maintaining its own
memo file storage characteristics. When you use the DBFMEMO RDD,
you add a number of new features including:

s All non-memo features of the “super” driver (DBFNTX, DBEMDX,
etc.)

w An efficient storage mechanism for data which is not tabular in nature

This chapter explains how to install DBFMEMO and how to use it in
your applications. The following major topics are discussed:

= Overview of the DBFMEMO RDD
Installing DBFMEMO Driver Files
m Linking the DBFMEMO Driver

Using the DBFMEMO Driver

Drivers Guide 7-1

Overview of the DBFMEMO RDD

Overview of the DBFMEMO RDD

The DBFMEMO driver lets you create and maintain index files
compatible with one driver (e.g., DBENTX) and, simultaneously, create
and maintain memo (.dbv or .fpt) files with features compatible with or
even more powerful than .fpt files created under FoxPro 2.

As the DBFMEMO RDD can only maintain memo data, it must be used
in conjunction with another driver capable of handling index and .dbf
functionality. The features this driver will provide (in addition to those it
inherits from its “super” driver) are listed below:

s A 4.2 GBfile size limitation
s A 1-byte minimum block size limitation
» An efficient technique for recycling file space

m The capability to store any CA-Clipper data type (other than code
blocks)

m Extensions to the CA-Clipper language (BLOB functions) for file and
field management

Installing DBFMEMO Driver Files

The DBFMEMO driver is supplied as the file, DBFMEMO.LIB.

The CA-Clipper installation program installs this driver in the
\CLIP53\LIB subdirectory on the drive that you specify, so you need not
install the driver manually.

Linking the DBFMEMO Database Driver

To link the DBFMEMO database driver into an application program, you
must specify DBFMEMO.LIB to the linker, in addition to your
application object (.OB]J) files and the “super” driver (in this example,
DBENTX is used as the “super” driver).

To link with the protected mode linker, use:

EXOSPACE FI <appObjectList> LI DBFMEMO, [<superRDDLib>]

7-2 CA-Clipper

Using the DBFMEMO Database Driver

Note: These link commands all assume the LIB and OB]J environment
variables are set to the standard locations. They also assume that the
CA-Clipper programs were compiled without the /R option. When using
the DBENTX driver as the “super” to DBFMEMO, it is linked by default.
Specify other database drivers to be used as the “super” where
<superRDDLib> is stated as optional in the link command.

Using the DBFMEMO Database Driver

The DBFMEMO driver must be used in conjunction with a “super”
driver. In the following discussion, we will assume DBFNTX to be the
chosen “super” driver. However, we could have chosen the DBFMDX or
DBFNDX drivers and obtained similar results:

1.

Place REQUEST DBFMEMO at the beginning of your application or at
the top of the first program (.prg) file that opens a database file using
the DBFMEMO driver.

Call MEMOSETSUPER(“DBENTX") at the beginning of your
application, or at the very least, before you open any database files.

Specify the VIA “DBFMEMO” clause if you open the database file
with the USE command.

-OR-

Specify “DBFMEMO” for the <cDriver> argument if you open the
database file with the DBUSEAREA() function.

-OR-

Use RDDSETDEFAULT(“DBFMEMOQO”) to set the default driver to
DBFMEMO.

Except in the case of REQUEST, the RDD name must be a literal
character string or a variable. In all cases it is important that the
driver name be spelled correctly using uppercase letters.

Drivers Guide 7-3

Using the DBFMEMO Database Driver

The following program fragments illustrate:

REQUEST DBFMEMO
REQUEST DBFNTX
MEMOSETSUPER ("DBFNTX")

USE Customers INDEX Name, Address NEW VIA "DBFMEMO"
-OR-

REQUEST DBFMEMO

REQUEST DBFNTX
RDDSETDEFAULT ("DBFMEMO")
MEMOSETSUPER("DBFNTX")

USE Customers INDEX Name, Address NEW

Note: The REQUEST DBFNTX compiler declaration is the default in
CA-Clipper. When stating other drivers as “super” to DBFMEMO, place
the REQUEST statement where DBFNTX is shown.

File Maintenance Under DBFMEMO

For index file maintenance under DBFMEMO), refer to the similar section
of the chosen super driver.

The .dbv files do not require maintenance under normal conditions.

They will not grow more than 10 to 20 percent larger than their packed
size even on a network with a lot of file activity. However, if you want to
eliminate this working slack space from the .dbv files (for example, when
shipping data to a customer), use the COPY TO command to create a
.dbv file that is as small as possible. Note that the PACK command does
not eliminate the slack space that may be present; however, the slack
space made available by a PACK is available for reuse.

7-4 CA-Clipper

Using the DBFMEMO Database Driver

DBFMEMO and Memo Files

The DBFMEMO driver, by default, uses a non-FoxPro-compatible memo
(.dbv) file to store data for memo fields. These memo files have a default
block size of 1 byte rather than the 512-byte default for .dbt files or the 32
bytes of the FoxPro 2 .fpt file. The block size can be set to 32 bytes to
achieve memo compatibility with FoxPro; however, index compatibility
will depend on your chosen super driver.

DBFMEMO memo files can store any type of data except code blocks. In
addition, they can store data larger than 64 K (remember that Clipper
string variables are still limited to 64 K). While .dbt files use an end of
file marker (ASCII 26) at the end of a memo entry, .dbv files store the
length of the entry. This not only eliminates the problems normally
encountered with storing binary data in a memo field, but also speeds up
memo field access since the data need not be scanned to determine the
length.

Note that FoxPro is only capable of reading and writing character data to
a memo file and that the block size of the memo file must be equal to or
larger than 32. Writing arrays and other data types to a memo file is a
CA-Clipper extension to the .dbv file format, and FoxPro will not be able
to read these data type. In addition, FoxPro is not able to read character
data greater than 64 K.

Tips for Using DBFMEMO

Below are some tips for using DBFMEMO:

1. If your application uses memo fields, you should convert your .dbt
files to .dbv files.

There are some good reasons for using .dbv files. The CA-Clipper
.dbt files use a fixed block size of 512 bytes, which means that every
time you store even 1 byte in a memo field CA-Clipper uses 512 bytes
to store it. If the data in a memo field grows to 513 bytes, then two
blocks are required. The .dbv file, on the other hand, requires only
the exact space of the data being stored.

When creating .dbyv files, the block size is set at 1 byte which is the
optimal size, although it is not .fpt compatible. A simple conversion
from .dbt files to .dbv files will generally shrink your memo files by
approximately 50 percent.

2. Add DBFMEMO.LIB as a library to your link command or link script.

Drivers Guide 7-5

Summary

Summary

In this chapter, you were given an overview of the features and benefits
of the DBFMEMO RDD. You also learned how to link this driver and
how to use it in your applications.

7-6 CA-Clipper

Chapter 8

DBFBLOB Driver Installation
and Usage

In This Chapter

DBFBLOB is a special RDD for CA-Clipper. When you use the DBFBLOB
RDD, you have access to a number of new features including:

m Stand-alone “blob” (.dbv) files that do not require associated database
(.dbf) files

» An efficient storage mechanism for data which is not tabular in nature

This chapter explains how to install DBFBLOB and how to use it in your
applications. The following major topics are discussed:

s Overview of the DBFBLOB RDD
» Installing DBFBLOB Driver Files
s Linking the DBFBLOB Driver

s Using the DBFBLOB Driver

Drivers Guide 8-1

Overview of the DBFBLOB RDD

Overview of the DBFBLOB RDD

The DBFBLOB RDD is designed to give you an alternative mechanism
for storing and retrieving memo fields and to give you direct control over
managing the file used to store the data (called a BLOB file, for Binary
Large OBject).

The DBFBLOB driver features:

m A 4.2 GB file size limitation

= A l-byte minimum block size limitation

» An efficient technique for recycling file space

» The capability to store any CA-Clipper data type (other than code
blocks)

m Extensions to the CA-Clipper language (BLOB functions) for file and
field management

The DBFBLOB RDD lets you create and maintain a memo (.dbv) file
without requiring an associated database (.dbf) file. This lets you create
one file that would contain what you might normally put in several
memo (.dbt) files. It is especially useful for storing startup information
such as user IDs, customizable options such as color settings, etc.

As there is no associated .dbf file with the DBFBLOB RDD, there is an
added level of management that is required by the programme:. Under
a conventional DBF RDD, memo field data is stored in the memo file
and a reference value to that data is automatically stored in the 10-byte
memo field in the .dbf file.

The DBFBLOB RDD uses functions such as BLOBDIRECTPUT() to store
data in the memo file and returns the reference value to your program
instead of storing it automatically in a .dbf memo field record pointer.
The programmer then assumes the responsibility of saving the reference
value, which if lost is equivalent to losing the data.

The function BLOBROOTPUT() serves as the solution to this problem.
BLOBROOTPUTY() will store one (and only one) piece of data which can
be retrieved with BLOBROOTGET(). If your program only requires one
piece of data to be stored independently (such as an array of user
settings), simply use BLOBROOTPUTY() to store the data.

8-2 CA-Clipper

Installing DBFBLOB Driver Files

However, if the program requires that many pieces of data need to be
stored independently, you can make multiple calls to
BLOBDIRECTPUT() and store the returned reference values into an
array. Then, store the array of reference values in the root of the memo
file with BLOBROOTPUTY).

Installing DBFBLOB Driver Files

The DBFBLOB driver is supplied as the file DBFBLOB.LIB.

The CA-Clipper installation program installs this driver in the
\CLIP53\LIB subdirectory on the drive that you specify, so you need not
install the driver manually.

Linking the DBFBLOB Database Driver

To link the DBFBLOB database driver into an application program, you
must specify DBFBLOB.LIB to the linker in addition to your application
object (.OB]J) files.

To link with the protected mode linker, use:

EXOSPACE FI <appObjectList> LI DBFBLOB

Note: These link commands all assume the LIB and OBJ environment
variables are set to the standard locations. They also assume that the
CA-Clipper programs were compiled without the /R option.

Drivers Guide 8-3

Using the DBFBLOB Database Driver

Using the DBFBLOB Database Driver

To use the DBFBLOB RDD in a CA-Clipper program:
1. Place REQUEST DBFBLOB at the beginning of your application or at

the top of the first program (.prg) file that opens a database file using
the DBFBLOB driver.

Specify the VIA “DBFBLOB” clause if you open the database file with
the USE command.

-OR-

Specify “DBFBLOB” for the <cDriver> argument if you open the
database file with the DBUSEAREA() function.

-OR-

Use RDDSETDEFAULT(“DBFBLOB”) to set the default driver to
DBFBLOB.

Except in the case of REQUEST, the RDD name must be a literal
character string or a variable. In all cases it is important that the
driver name be spelled correctly using uppercase letters.

The following program fragments illustrate:

REQUEST DBFBLOB

// Opening Customers.Dbv
USE Customers NEW VIA "DBFBLOB"

-OR-

REQUEST DBFBLOB
RDDSETDEFAULT ("DBFBLOB")

// Opening Customers.Dbv
USE Customers NEW

8-4 CA-Clipper

Summary

Summary

In this chapter, you were given an overview of the features and benefits
of the DBFBLOB RDD. You also learned how to link this driver and how
to use it in your applications.

Drivers Guide 8-5

Chapter 9
Alternate Terminal Drivers

In This Chapter

This chapter discusses how alternate terminal drivers fit into the overall
CA-Clipper architecture as well as how to install and use each of the
supplied terminal drivers. The following major topics are discussed:

s The Alternate Terminal Driver Architecture
s The ANSITERM Alternate Terminal Driver
s The NOVTERM Alternate Terminal Driver

s The PCBIOS Alternate Terminal Driver

The Alternate Terminal Driver Architecture

CA-Clipper supports a driver architecture that allows
CA-Clipper-compiled applications to use alternate terminal drivers. This
architecture provides support for nonstandard video hardware and
ANSI output devices, allowing your applications to run in a wider
variety of environments.

The following terminal drivers are supplied as part of the CA-Clipper
Development System and are discussed in this chapter:

s The ANSITERM driver provides ANSI terminal support for systems
that require it

s The NOVTERM driver causes CA-Clipper applications to execute
faster when run on some nondedicated network server software

m The PCBIOS driver provides direct BIOS calls rather than direct
screen writes for systems requiring this form of I/O

Drivers Guide 9-1

The Alternate Terminal Driver Architecture

In CA-Clipper, communication with I/O devices is controlled by a
multilayered terminal system. At the lowest level is the terminal driver
which controls screen and keyboard activity. It consists of a screen and
keyboard driver that communicates directly with the I/O device
(operating system or hardware). It is the device-specific part of the
CA-Clipper terminal system.

There is, then, a higher level system that communicates with terminal
drivers. This system is known as the General Terminal (GT) system and
provides general services that create CA-Clipper screen and keyboard
commands and functions. The following figure demonstrates:

CA-Clipper screen and keyboard commands
and functions

General Terminal (GT.OB]J)

Terminal Driver

Screen | Keyboard

The default terminal driver, designed for IBM PC and 100 percent
compatibles, is supplied as a library file (TERMINAL.LIB) installed into
your \CLIP53\LIB directory. This driver links into each program
automatically if you specify no alternative terminal driver, provided that
you do not use the /R option when you compile. An alternate terminal
driver is supplied as a separate library (.LIB) file that links into an
application program in place of the default terminal driver, if you specify
it on the link line.

All alternate terminal drivers work through the General Terminal layer
as supplied in the file GT.OB]. The CA-Clipper installation program
installs this file in the \CLIP53\OBJ subdirectory on the drive that you
specify, so you need not install the driver manually.

9-2 CA-Clipper

The ANSITERM Alternate Terminal Driver

The ANSITERM Alternate Terminal Driver

The ANSITERM terminal driver supports the ANSI screen mode for all
screen display from CA-Clipper programs.

This screen mode is installed by specifying ANSLSYS in the user’s
CONFIG.SYS. ANSLSYS replaces the default DOS CON device driver
for video display and keyboard input. Once installed, it supports ANSI
escape sequences to erase the screen, set the screen mode, and control the
cursor in a hardware-independent way. Most modern DOS programs,
however, do not use it and write either directly to the video hardware or
use BIOS routines for enhanced screen performance.

Use the ANSI screen mode for CA-Clipper programs that run on
hardware that does not support either writing to video hardware or BIOS
calls for screen display. This is the case when using alternative display
hardware to support the blind.

Note: The ANSITERM terminal driver fully supports all screen and
keyboard functionality of the default terminal driver. This includes the

ability to save and restore screens, as well as support for all keys on the
standard 101-key keyboard.

Installing ANSITERM Terminal Files

The ANSITERM terminal driver is supplied as the file ANSITERM.LIB.
The CA-Clipper installation program installs this file in the \CLIP53\LIB
subdirectory on the drive that you specify, so you need not install it
manually.

Linking the ANSITERM Terminal Driver

To link the ANSITERM alternate terminal driver into an application
program, you must specify both GT.OB] and ANSITERM.LIB to the
linker along with your application object (.OBJ) modules.

To link with the protected mode linker, use:

EXOSPACE FI <appObjectList>, GT LI ANSITERM

Note: These link commands assume you have set the LIB and OB]
environment variables to the standard locations. They also assume that
the CA-Clipper programs were compiled without the /R option.

Drivers Guide 9-3

The ANSITERM Alternate Terminal Driver

The Runtime Environment

Using ANSITERM.LIB requires that ANSLSYS be installed on the user’s
computer. To accomplish this, include the following statement in the
user’s CONFIG.SYS:

DEVICE=ANSI.SYS

Performance Concerns

Because the ANSITERM terminal driver uses buffered screen writes for
all screen painting, some operations, especially those that scroll the
screen, are slow. These include:

1. All box drawing commands and functions

. All console commands and functions when scrolling

2

3. All clear screen commands and functions
4. All restore screen commands and functions
5

. Standard out functions (OUTSTD() and OUTERR()) whether the
screen is scrolling

Note: Overall performance of CA-Clipper programs is slower since the
ANSITERM terminal driver must spend more time polling for user
events than the standard CA-Clipper terminal driver.

Screen Output from C and Assembly Language

The ANSITERM terminal driver overwrites all output from C and
Assembly Language when it refreshes the screen from the screen bulffer.

As a consequence, you should perform all screen output from
CA-Clipper.

The ANSITERM terminal driver also virtualizes the cursor. This means
that BIOS functions that report the location of the hardware cursor will
not always return the correct value. To obtain the cursor position, use
the CA-Clipper ROW() and COL() functions instead.

9-4 CA-Clipper

The NOVTERM Alternate Terminal Driver

Other Incompatibilities

1. ISCOLOR() always returns false (.F.).

2. When you load DBU, the default color mode is monochrome unless
you specify DBU with the /C command line option.

3. The first time you invoke the debugger, the default color mode is also
monochrome unless you set the Options Mono display off.

4. When an application linked with the ANSITERM terminal driver
terminates, the last color set in the application becomes the DOS color.
This happens because colors set with ANSITERM are global to DOS
and CA-Clipper cannot query DOS for the current screen colors as the
application loads.

5. Nondisplaying ASCII characters are presented as a space by the
ANSITERM terminal driver. These include BELL (CHR(7)), BS
(CHR(8)), TAB (CHR(9)), LF (CHR(10)), CR (CHR(13)), and ESC
(CHR(27)).

The NOVTERM Alternate Terminal Driver

The NOVTERM terminal driver is a special-purpose driver that
circumvents an incompatibility between some nondedicated network
server software and CA-Clipper. This incompatibility causes printers
connected to the server to slow to an unusable rate.

CA-Clipper applications and nondedicated servers compete for
resources. CA-Clipper applications make use of the time between
keystrokes to perform various system tasks. This greatly improves the
application’s overall performance by limiting its idle time. Certain
nondedicated servers only attempt to print within an application’s idle
time. Since a CA-Clipper application is seldom idle, this greatly slows
printing.

Important! The NOVTERM terminal driver corrects the incompatibility by
preventing the CA-Clipper application from using idle time. Because this can
severely hamper performance, you should only use the NOVTERM terminal
driver when necessary, and then you should link it only into those applications
that are physically running the nondedicated server.

Drivers Guide 9-5

The NOVTERM Alternate Terminal Driver

Note: The NOVTERM terminal driver fully supports all screen and
keyboard functionality of the default terminal driver. This includes the
ability to save and restore screens, as well as support for all keys on the
standard 101-key keyboard.

Installing NOVTERM Terminal Files

The NOVTERM terminal driver is supplied as the file NOVTERM.LIB.
The CA-Clipper installation program installs the driver file in the
\CLIP53\LIB subdirectory on the drive that you specify, so you need not
install it manually.

Linking the NOVTERM Terminal Driver

To link the NOVTERM alternate terminal driver into an application, you
must specify both GT.OBJ] and NOVTERM.LIB to the linker with your
application object (.OBJ) modules.

To link with the protected mode linker, use:

EXOSPACE FI <appObjectList>, GT LI NOVTERM

Note: These link commands assume you have set the LIB and OB]J
environment variables to the standard locations. They also assume that
the CA-Clipper programs were compiled without the /R option.

Performance Concerns

Overall performance of CA-Clipper programs is slower, since the
NOVTERM terminal driver must spend more time polling for user
events than the standard CA-Clipper terminal driver and since the
program will not use its idle time for other tasks.

Screen Output from C and Assembly Language

The NOVTERM terminal driver overwrites all output from C and
Assembly Language when it refreshes the screen from the screen buffer.
Therefore, you should perform all screen output from CA-Clipper.

The NOVTERM terminal driver also virtualizes the cursor. This means
that BIOS functions that report the location of the hardware cursor will
not always return the correct value. To obtain the cursor position, use
the CA-Clipper functions—ROW() and COL().

9-6 CA-Clipper

The PCBIOS Alternate Terminal Driver

The PCBIOS Alternate Terminal Driver

The PCBIOS terminal driver uses BIOS calls instead of direct screen
writes. It is designed for applications that trap BIOS calls to redirect
output over telecommunication lines or to convert output to a form
compatible with two-byte character sets.

Note: The PCBIOS terminal driver fully supports all screen and
keyboard functionality of the default terminal driver. This includes the
ability to save and restore screens, as well as support for all keys on the
standard 101-key keyboard.

Installing PCBIOS Terminal Files

The PCBIOS terminal driver is supplied as the file, PCBIOS.LIB. The
CA-Clipper installation program installs the driver file in the
\CLIP53\LIB subdirectory on the drive that you specify, so you need not
install it manually.

Linking the PCBIOS Terminal Driver

To link the PCBIOS alternate terminal driver into an application
program, you must specify both GT.OBJ and PCBIOS.LIB to the linker in
addition to your application object (.OBJ) modules.

To link with the protected mode linker, use:

EXOSPACE FI <appObjectList>, GT LI PCBIOS

Note: These link commands assume you have set the LIB and OBJ
environment variables to the standard locations. They also assume that
the CA-Clipper programs were compiled without the /R option.

Drivers Guide 9-7

Summary

Performance Concerns

Because the PCBIOS terminal driver uses buffered screen writes for all
screen painting, some operations, especially those that scroll the screen,
are slow. These include:

1. All box drawing commands and functions

2. All console commands and functions when scrolling
3. All clear screen commands and functions

4. All restore screen commands and functions

5

. Standard out functions (OUTSTD() and OUTERR()) whether the
screen is scrolling

Screen Output from C and Assembly Language

The PCBIOS terminal driver also overwrites all output from C and
Assembly Language when it refreshes the screen from the screen buffer.
Therefore, you should perform all screen output from CA-Clipper.

The PCBIOS terminal driver also virtualizes the cursor. This means that
BIOS functions that report the location of the hardware cursor do not
always return the correct value. To obtain the cursor position, use the
CA-Clipper functions—ROW() and COLY().

Summary

This chapter has introduced you to the alternate terminal driver concept,
giving you specific information on the architecture used to implement
them in CA-Clipper. Each of the alternate terminal drivers supplied with
CA-Clipper was discussed, including how to link and use it into your
application and the implications of doing so.

9-8 CA-Clipper

Index

A

Alternate terminal drivers
ANSITERM, 9-3
architecture, 9-2
NOVTERM, 9-5
PCBIOS, 9-7

ANSITERM, 9-3
installing, 9-3
linking, 9-3
overview, 9-3

Architecture
alternate terminal drivers, 9-2
Replaceable Database Drivers, 2-1

D

DBFBLOB, 8-1
installing, 8-3
linking, 8-3
overview, 8-2
using, 8-4

DBEFCDX, 3-1
compact indices, 3-2
compound indices, 3-3
conditional indices, 3-3
installing, 3-4
linking, 3-4
overview, 3-2
using, 3-4

DBFMDX, 4-1
installing, 4-2
linking, 4-2
using, 4-2

DBFMEMO, 7-1
installing, 7-2
linking, 7-2
overview, 7-2
using, 7-3

DBFNDX, 5-1
dBASE III PLUS compatibility, 5-4
installing, 5-2
linking, 5-2
overview, 5-1
supported data types, 5-4
using, 5-3

DBFNTX, 6-1
installing, 6-3
linking, 6-3
overview, 6-2
supported data types, 6-4
using, 6-3

DBENTX version 2.0, 6-1

N

NOVTERM
installing, 9-6
linking, 9-6
overview, 9-5

Drivers Guide Index-1

O

Order Management system
DBFNDX limitations, 2-20
DBENTX limitations, 2-20
overview, 2-15
primary elements, 2-16
processes, 2-15
terminology, 2-15, 2-16

P

PCBIOS
installing, 9-7
linking, 9-7
overview, 9-7

R

Replaceable Database Drivers
alternate terminal drivers, 1-2, 9-2
architecture, 2-1
DBFBLOB, 8-1
DBFCDX, 3-1
DBFMDX, 4-1
DBFMEMO, 7-1
DBFNDX, 5-1
DBFNTYX, 6-1
introduction, 1-2
key features, 2-14
language implementation, 2-6
RDD basics, 2-2
terminology, 2-4
user interface levels, 2-9

Index-2 CA-Clipper

